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Vaporization of a liquid drop suddenly exposed 
to a high-speed airstream 
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(Received 7 February 1995 and in revised form 5 September 1995) 

Many studies of fragmentation of liquid drops at supersonic Mach numbers report the 
appearance of large amounts of mist. Photographs from other studies, which do not 
mention mist at all, strongly suggest that copious amounts of mist are formed at the 
earliest stages of fragmentation. In this paper, we present arguments and calculations 
which indicate that this mist is formed from condensed vapour arising from the flash 
vaporization of the hot and low-pressure liquid on the leeside of the drop. Low 
leeside pressures are produced by the rarefaction of the gas, the acceleration of the 
drop, and the high tensions generated by rapid stretching of the stripped liquid. The 
droplet temperature may rise because of heat transfer from the hot gas to thin drop 
filaments, and by viscous heating due to rapid deformation. 

1. Introduction 
The flash vaporization of liquid drops suddenly exposed to a high-speed airstream 

has not been considered in studies of aerodynamic breakup. In principle, by flash 
vaporization we mean the sudden reduction of a superheated liquid mass to vapour. 
In practice, we admit any mechanism which could lead to vapour in the short times 
in which the liquid drop is fragmented by high-speed air. There are many studies 
that mention the formation of copious amounts of mist (Reinecke & Waldman 1970; 
Waldman, Reinecke & Glenn 1972; Simpkins & Bales 1972) and still more that do 
not mention mist but speak of the formation of sprays (Ranger & Nicholls 1969; 
Yoshida & Takayama 1990). In an experiment, Engel (1958) showed that drops of 
millimetre diameter would be completely reduced to mist in the region between the 
detached shock and the surface of the drop at Mach numbers in the range of 1.3 to 
1.7. She observed that the mist appeared to emanate from the leeward face of the 
water drop, while the remainder of the drop stayed essentially intact. She also pointed 
out that as the Mach number was increased, the mist formed sooner and in larger 
amounts, and as the water drop diameter was decreased, the mist also formed sooner. 
In a careful discussion of the most probable sources of the water mist, Engel rejected 
evaporation followed by condensation. Her arguments were based on the fact that 
evaporation takes much longer than the time elapsed before the appearance of the 
mist. However, she did not consider the mechanism of flash vaporization proposed 
here. 

We have not found any literature which explicitly identifies flash vaporization as 
the cause of the mist coming off liquid drops behind a high-Mach-number shock 
wave. However, there are some studies of the flash vaporization of superheated water 
jets. Early investigations of the flash vaporization of superheated jets into still air at 
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atmospheric pressure were carried out by Schmidt (1949), Stephenson (1965), Fedoseev 
(1958), Brown (1960), Short (1962), and Ostrowski (1966). Brown (1960) reports that 
as the liquid temperature was increased, flashing and subsequent atomization of the 
liquid stream occurred over a fairly narrow temperature range. Gooderum & Bushnell 
(1969) did studies of very low-speed, low-Weber-number flashing jets of water into 
vacuum and monitored the drop sizes as a function of the temperature. Two different 
modes, namely ‘flashing’ and aerodynamic atomization, were considered. 

Flash vaporization is associated with the condition where the ambient pressure is 
below the vapour pressure of the liquid. As is well known, very low pressures are 
generated at the back side of a spherical body moving forward at high speed in still 
air. The pressure at the front stagnation point is very high, but the pressure on the 
surface decreases rapidly to values which can be below the vapour pressure of the 
liquid. In the case of a liquid drop suddenly exposed to a high-speed airstream, the 
unsteady motion introduces an additional reduction of the pressure at the leeside of 
the drop due to its rapid acceleration by the air flow. This acceleration can be very 
large, and the resulting effect on the pressure is significant. 

There are other effects that contribute to the reduction of the leeside pressure. The 
aerodynamic forces tend to strip off water from the equator of the drop. The stripping 
and stretching motions lead to the formation of water sheets or threads. The motion 
prevalent in these sheets or threads is extensional, which is associated with a pressure 
distribution that decreases in the flow direction. When this extensional motion is 
severe, the liquid may break in tension, which results in cavitation or vaporization of 
the liquid. 

Behind the bow shock wave, the temperature increases dramatically. The defor- 
mation and the aerodynamic friction also promote an increase in the temperature of 
the drop. Because the time that it takes to form the mist is typically several hundred 
microseconds, it is unlikely that the drop’s temperature would rise significantly. But 
even a modest temperature change would lead to a considerable increase of the 
vapour pressure, which would promote flash vaporization. 

In the following, we present a detailed discussion of the aforementioned mechanisms 
which provide evidence for flash vaporization as the source of the mist produced after 
a liquid drop is struck by a high-speed airstream. 

2. Pressure distribution on a sphere moving in still air 
Flash vaporization may occur when the drop leeside pressure falls below the vapour 

pressure of the liquid. In this section we discuss the variation of the surface pressure 
with Mach number and Reynolds number for spheres moving at a constant supersonic 
speed. In reality, the drop deforms rapidly and accelerates, so these results are only 
directly applicable in the early stages of the aerodynamic dissemination process. 
However, we believe a knowledge of the steady pressure distribution provides some 
insights into the real problem. It should be noted that shock tube experiments show 
that the steady pressure distribution is established before the drop starts to deform. 

Although the flow around a sphere at low speed has been carefully studied for many 
years, reports on supersonic flows are very few. Karyagin & Shvets’ (1991) paper 
may be the best that we have found. Karyagin & Shvets did careful measurements of 
the pressure distribution around a sphere both in a 50mm ballistic range equipped 
with a pressure channel and in a wind tunnel. Figure 1 is a cartoon representation of 
a shadowgraph from their work that shows a 4cm diameter sphere at a free-stream 
Mach number of 2.8 and a Reynolds number of 2.8 x lo8. This picture of the sphere 
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FIGURE 1. Cartoon representation of a shadowgraph of a sphere in supersonic flow, M = 2.8. From 
the experiment of Karyagin & Shvets (1991). 

Angle from stagnation point (deg.) 

FIGURE 2. Experimental pressure distributions on spheres. Pressure is normalized by the stagnation 
point pressure, p r ;  M = 0.3, 0.5, 0.7, 0.9, 1.2, 3.0, cases 1-6 respectively. (From Karyagin & Shvets 
1991). 

in free flight clearly shows the separation point, the detached bow shock, and the 
viscous wake. 

The pressure distributions on the sphere measured by Karyagin & Shvets are 
shown in figure 2, where p t  is the stagnation-point pressure, which is related to the 
free-stream pressure pK, by the normal shock relation, 

where y is the ratio of specific heats of air and M is the free-stream Mach number 
relative to the sphere. Figure 2 shows that increasing the Mach number reduces 
the minimum pressure on the leeward surface of the sphere. For M = 1.2, the 
minimum p/p i  is about 0.25, and using (2.1) we get pmln /pm = 0.6; for M = 3.0, the 
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minimum pressure relative to the free-stream pressure is p m i n / p m  = 0.5. According to 
the experiments, the entire leeside has this pressure. 

Experimental measurements of the pressure and temperature distribution on spheres 
in supersonic flow are not abundant. From the existing data we are not able to 
determine the details of the pressure and temperature on the sphere, in the wake, 
or in the recompression region. To understand these aspects of the problem better, 
we have used a computational fluid dynamics method to solve the Navier-Stokes 
equations for the steady supersonic flow of a perfect gas over a sphere. In these 
calculations, we are concerned with intermediate times during the interaction of the 
drop with the high-speed airstream. That is, we are considering times after the 
shock wave has passed over the drop, but before the drop has deformed significantly. 
This approach is valid based on the drop breakup times quoted by Engel and as 
a result of unsteady calculations that we have performed. We find that a steady 
flow is established during the time that it takes the flow to travel about two drop 
diameters. This is typically of the order of microseconds for millimetre-sized drops. 
The numerical method uses a finite-volume formulation with second-order upwind 
flux evaluations. The time-dependent equations are integrated in time using an 
implicit Gauss-Seidel line-relaxation method. We have performed grid convergence 
studies to ascertain that the 128 x 128 body-fitted grid is sufficiently fine. For more 
details of the numerical method, see Candler & MacCormack (1991). 

We solved the compressible Navier-Stokes equations, supplemented by the perfect 
gas equation of state and the energy equation. We used a calorically perfect gas with 
a ratio of specific heats, y,  equal to 1.4. The viscosity dependence on the temperature 
is approximated with the Sutherland formula 

coT3I2 p=---- 
T +C,' 

where co = 1.458 x P and el = 110.3 K are 
temperature. The dilatational viscosity ;1 is related 

;1 = - 2  

A constant Prandtl number of 0.72 was used. 
3 p.  

constants, and T is the absolute 
to p by the Stokes assumption 

(2.3) 

The boundary conditions are no slip at the drop surface, with a prescribed tem- 
perature that approximates the unknown temperature of the surface of the sphere. 
The incoming free-stream conditions are also fixed. The outflow is assumed to be 
supersonic, and the flow is axisymmetric. 

We first reproduced cases 5 and 6 in figure 2. A comparison of the pressure 
distribution on the surface of the sphere with Karyagin & Shvets' experimental data 
is given in figure 3. The numerical results reproduce the experimental data except 
for a few minor differences. At M = 1.2, the computations show a slightly higher 
surface pressure for angles between 45" and 90". And at M = 3.0, the recompression 
in the wake occurs slightly earlier than the experiment. However, the error bars on 
the experimental data are not known. Also, the surface temperature of the spheres 
used in the experiments is unknown. 

It is interesting to note that the experimental data are insufficient to determine the 
minimum pressure on the surface for the case of M = 3.0. From the computational 
results, the minimum pressure on the surface in this case is found to be 15% of 
the free-stream pressure, whereas the experiment shows a minimum pressure ratio of 
50%. The lower minimum pressure at M = 3.0 is a result of the flow staying attached 
farther around the sphere than for the M = 1.2 case. At this point, it is not clear 
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FIGURE 3. Comparison between experimental and numerical (curves) pressure distribution on 
a sphere with a diameter of 2.714 cm. In the computations, the sphere is assumed to have a 
temperature of 300 K, while the incoming airstream is at 250 K. 

whether the increased attachment length is a result of the higher Mach number or 
the higher Reynolds number for this case. 

A clearer picture of how the minimum pressure changes with Mach number is 
given in figure 4. Here we plot the ratios of the minimum surface pressure to the 
free-stream pressure and to the stagnation-point pressure for a sphere of diameter 
2.714cm. Figure 4 shows that the ratio of the minimum pressure to the stagnation 
pressure decreases with increasing Mach number. However, since the stagnation 
pressure relative to the free-stream pressure increases with the square of the Mach 
number, the ratio of the minimum pressure to the free-stream pressure has a minimum 
of 0.12 at about M = 4. Hence, for usual free-stream pressures, the minimum pressure 
on the surface can be quite low. The variation of p, , , /pr  with Mach number may be 
explained by the fact that the pressure on the leeside of a sphere is determined to a 
large extent by the location of the separation point. The separation point terminates 
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FIGURE 6. The computed pressure distributions on the surface of a sphere. From top to bottom, 
M = 1.2, 1.6, 2.0, 2.8, 3.2, 4.0. The first local pressure minimum corresponds to the separation 
point. 

the expansion of the gas around the sphere. Thus, delayed separation allows the 
flow to expand to a lower pressure. This effect is evident in figure 5,  which plots the 
angle of the separation point, O,, as a function of Mach number. We see that the 
location of separation increases with Mach number and gradually becomes constant 
at 122”. Also plotted in figure 5 is the location of the minimum surface pressure, 
8,. The minimum pressure is not located at the separation point, but always just 
before the pressure recovers. Thus, the pressure minimum is located nearer the rear 
centreline and varies less with Mach number than the separation location. This effect 
can be further illustrated by considering figure 6, which plots the surface pressure 
for Mach numbers between 1.2 and 4. There is a local minimum in the pressure at 
the separation point, then a fairly constant-pressure region in the recirculation zone, 
and then a further drop in the pressure to the minimum pressure. Then, the flow 
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recompresses near the sphere centreline. The surface pressure distribution becomes 
almost indistinguishable when the Mach number is greater than 4. 

The relationship between the separation point and the minimum pressure is more 
obvious in figure 7, where pressure contours are displayed for three Mach numbers. 
We see that the pressure drops until the separation point, and then there is a region 
of more complicated pressure variation. Downstream of the separation point, the 
pressure near the surface is essentially constant. We also note that there is a region 
in the gas near the surface where the pressure becomes even lower than the minimum 
pressure on the surface. 

We also computed cases with different sizes of spheres. The results are summarized 
in figure 8, which plots the ratio of the minimum surface pressure to the free-stream 
pressure as a function of Reynolds number for three different Mach numbers. Clearly, 
the minimum pressure decreases with Reynolds number, though this variation is fairly 
slow. Again, the smallest minimum pressure occurs for free-stream Mach numbers of 
about 4 for all Reynolds numbers that we simulated. 

So far we have presented numerical results which indicate that the pressure is fairly 
low on the leeward side of a sphere travelling at high speed in still air. But since 
aerodynamic dissemination is an unsteady process, we need to turn our attention to 
the effect of acceleration of the drop on its pressure. 

3. Pressure reduction by acceleration 
Just as gravity causes hydrostatic pressure, a large acceleration may produce an 

extremely low pressure in a fluid, which may cause cavitation and vaporization (see 
Batchelor 1967). Let us consider the motion of a liquid drop in a high-speed airstream. 

With respect to an inertial frame, the fluid within a liquid drop in unsteady motion 
satisfies the momentum equation 

p (g + V . V V  = -Vp + div.S + p g  1 (3.1) 

where S is the extra stress due to deformation. We may divide the velocity into two 
parts 

where U ( t )  is the time-varying speed of the drop mass centre, and ex is the free-stream 
direction. Substituting (3.2) into (3.1), we get 

V = U(r)  ex + u (3.2) 

du du 
- + U -  + u - V u  = -Vp + div at ax S + pg - pUex,  (3.3) 

which shows that the unsteady acceleration of the drop mass centre is like g,  and 
will generate an ‘acceleration pressure’. If we put u, S, and g to zero, then dpldx = 
- p U  < 0 so that the pressure, p(x) = p ( 0 )  - p o x ,  decreases from the front of the 
drop to the back and is smallest at the leeside where mist is observed. 

The simple mechanism just described applies to the drop as a whole using the 
velocity U of the centre of mass. An additional acceleration arises from the velocity 
u of deformations relative to the centre of mass. It  would appear that the most 
important effects of this type are the extensional motions of streamers pulled out 
of the drop at early times when U is large and positive, and U is very small. To 
understand these effects better, we integrate (3.3) over the drop volume 9, assuming 
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FIGURE 7. Pressure contours in the sphere flow field. Pressure is normalized by the stagnation point 
pressure, pt. ( a )  M = 1.6; ( b )  M = 2.8; (c) M = 4.0. 
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FIGURE 8. The minimum pressure on the surface of the sphere as a function of the Reynolds 
number based on the sphere diameter for three Mach numbers. 

g = 0, and obtain 

The component of (7) in the free-stream direction is 

To get an estimate of the magnitude of the unknown terms, let us assume that the 
velocity field is purely extensional; we are thinking of streamers which are pulled out 
of the drop at early times in the drop breakup as in figure 9. Putting x = 0 at the 
base, we may imagine a purely extensional flow of the form 

u = 2kx, u = -ky,  w = -kz ,  (3.6) 

where k is the stretching rate. This flow model may represent the stripping and 
stretching stage of the drop deformation in a minimal way. However, an unrealistic 
feature of ( 3 . 6 )  is that it leads to a diagonal stress tensor with constant components 
when the stretching rate is independent of x. For a Newtonian fluid of viscosity p ,  S 
is given by 

2k 0 0 
S = p ( :  ;k : k ) .  (3.7) 

For this model, the streamwise equation of motion becomes 

p ( U + 2k U )  9 + 2p ( k  + 4k2) A - pn - ex ds, 
- -.b 

where At = J9 x d$. The right-hand side of (3 .8)  is essentially the pressure difference 
across the drop and streamers in the direction of the flow and a large pressure 
difference leads to the low pressure favourable to vaporization on the leeside. The 
rate k of extension increases from zero, so that k > 0 at times of interest. 

The acceleration may be estimated using an appropriate drag coefficient. For a 
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After 59 ws After 94 ps 

After 209 ws After 410 ps 

FIGURE 9. (From Engel 1958, figure 9) Shattering of a water drop in a shock tube; shock Mach 
number, M,, is 1.5. Note the thin sheets and filaments torn from the drop at the drop equator. 

sphere the drag coefficient, CD, is defined as 
D 

cD = ipaU2nR2’ 

where D is the drag, pa and U, are the density and 
drop radius. The sphere’s equation of motion is: 

(3.9) 

speed of the air, and R is the 

where we have neglected the induced mass since pw >> pa. Then, we can find the 
acceleration of the drop: 

(3.11) 

In one of Engel (1958)’s experiments, a drop with 0.135cm radius was suddenly 
exposed to a Mach 1.5 airstream. If we take CD = 0.4, and use Engel’s flow conditions, 
we find 

0 = 1.3 x 106cm s - ~  
from (3.11). This acceleration implies a drop velocity of 260 cm s-l after 2 x s 
of exposure to the airstream. Also from Engel’s work we estimate an average k as 
roughly 2 x lo3 s-’. The right-hand side of (3.8) may be regarded as 

(3.12) 

where A is the drop cross-sectional area and Ap is the pressure difference across the 
drop. Then 

A p A 3  p ( U + 2 k U ) 9 + 8 p k 2 R $ ,  (3.13) 
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> 0. If we approximate the drop 
s 

where the inequality comes from the fact that 
volume as At!' where P is the drop length which is seen to be about 0.54 cm at 2 x 
in Engel's experiment, we find that 

Ap rr 3.1 x 106dyn cm-'. (3.14) 

This value is the same order as the stagnation pressure, so the pressure at the rear 
of the drop can be quite low, inducing flash vaporization or cavitation. Note that 
the acceleration that Engel (1958) inferred from the measurement of the drift speed 
of the drop for this case was even higher (6 x 10'cm s - ~ )  than the value used to get 
(3.14). 

So far, we have separated the analysis of the drop surface pressure distribution into 
a steady and an unsteady part. We have shown that before a spherical drop deforms, 
it has a high stagnation pressure and low leeside pressure. This pressure distribution 
gives rise to a large acceleration which stretches the drop and causes a large pressure 
difference within the drop. Of course, the drop motion affects the flow of air over the 
drop; we have not considered this coupling. However, it is clear from our analysis 
that the drop leeside pressure is very low, which will cause flash vaporization. 

We also note that in the simple extensional model we considered, we have neglected 
the viscous terms which produce additional stretching motion through shear forces. 
Thus, they tend to increase the tension in the drop and to further promote flash 
vaporization. 

There is an additional mechanism that may produce vaporization due to the rapid 
stretching of the liquid during aerodynamic dissemination. 

4. Vaporization in a flowing liquid 
For a liquid in motion, the stress 7 is given by 

7 = -pl +s, 
where S is again the extra stress due to motion. Here p is chosen to satisfy the 
constraint of incompressibility, and is not determined by a constitutive relation or an 
equation of state. 

Now, the question arises as to how to determine the cavitation threshold in a 
flowing liquid. When the liquid is at rest or moving slowly, the cavitation threshold 
is simply 

where ps  is the vapour pressure of the liquid, which is usually a function of tempera- 
ture. However, in a flowing liquid the liquid does not understand the decomposition 
of the stress into p l  and S ,  and the cavitation threshold (4.2) is meaningless. Rather, 
we must consider the state of stress at every point. 

This requires that we compare the components on the diagonal of T in a coordinate 
system in which 7 is diagonal. In such a coordinate system, suppose that 

p < P s ,  (4.2) 

YT11 3 9 - 2 2  3 F 3 3 .  

Different rupture criteria involving the three principal stresses can be proposed and 
tested in experiments. An attractive possibility is that the liquid will break (cavitate) 
at a point if 

where Ym is the breaking threshold. Now, we can relate this breaking threshold to 

(4.3) 

F l l  3 F m ,  (4.4) 
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the cavitation threshold through Flm = -ps .  Then, we should see vapour whenever 
and wherever 

5 1 1  B - p s .  (4.5) 
This criterion is a generalization of the cavitation threshold (4.2), and may be related 
to a Newtonian fluid in motion for which 

dU 
5 1 1 =  -p + 2p-. 

ax 

Then, we can expect the formation of vapour where the rate of stretching 

82.l S = -  
ax 

is large enough that 

(4.7) 

In practical applications, ps can be replaced with an empirical cavitation pressure, say 
ps, which is an outgassing criterion associated with the presence of impurities. For 
more about the cavitation criterion for a flowing liquid, see Joseph (1994). 

During aerodynamic dissemination, the stretching rates S of threads stripped from 
the equator of a drop can be huge. Thus, the liquid in the threads may flash into 
vapour. 

5. Aerodynamic and viscous heating of the drop 
Because the vapour pressure increases with the drop temperature, it is important 

to consider mechanisms for the heating of the drop. There are two primary causes 
of drop heating: aerodynamic heating and frictional heating due to rapid drop 
deformation. 

For high-Mach-number flows, Tauber & Menees (1986) obtained an expression for 
the stagnation point heat transfer rate for a sphere (in W cm-2): 

q N 5.79 x 10- l2  (g)1'2 u,' 
- LV), 

where p a  and U, are the free-stream density and speed in g cmP3 and cm s-' 
respectively. R is the drop radius in cm, and h, and h, are the wall and total 
enthalpies respectively. 

For example, a 2 mm diameter drop travelling at Mach 3 in ambient air has a 
stagnation heat transfer rate of about 300 W cm-*. This is a substantial heat transfer 
rate, but it only acts during the drop breakup time, which is typically several hundred 
microseconds. Therefore, because the thermal diffusivity of typical drop liquids is very 
small, only a thin layer of the drop is heated before the drop is destroyed. For a water 
drop at the above conditions, a time-dependent heat transfer analysis shows that at 
the stagnation point of the drop the temperature rises only 11 K during 200 ps. The 
thermal layer is about 5% of the drop radius. Therefore, the convective heating of 
the drop by the surrounding air is insignificant. 

However, the heating of sheets of liquid stripped away from the drop can be 
important since the ratio of the surface exposed to hot gas to the volume of liquid to 
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be heated is then large (see figure 9). We may model this by an initial value problem 
for the heating of a liquid sheet of thickness /: 

pC,Tt = tiTjY, T ( y , t )  = T, at y = O , P ,  T ( y , O )  = To, (5.2) 
where the surface temperature, T,, is greater than the initial temperature, To, of the 
strip. The solution of this problem can be expressed as 

P /  

T - T, = 1 8,(0) e-n’n’l sin nny, 8,(0) = 1 & ( y )  sin nny djj 
n= I 

where 0 < y < 1 is made dimensionless with the strip thickness 8, T = tti/pC,L2 
is the dimensionless time, cx = .-/pC, is the thermal diffusivity, and 8, = To - T,. 
Taking L = 10-*cm as the thickness of the thermal layer calculated in the previous 
paragraph and putting 3 = 6.2 x 10-4cm2 s-l for an organic liquid, we find that 
z = 3.1 x after 500ps. Then e-n2r = 0.97 so we get fairly rapid heating of our 
initially cold strip. When the ambient air temperature is very high, as behind a bow 
shock at high M ,  a rise of the temperature of liquid stripped from the drop equal to 
3% of the difference between the drop and air temperature is substantial and could 
lead to flash vaporization. 

Photographs by Engel (1958) and others of the breakup of liquid drops in high- 
Mach-number streams show that very violent deformations occur over small times. 
The rapid deformations give rise to potentially large frictional heating accompanied 
by a significant temperature rise. The heating is associated with the term 2pD : D  
in the energy equation of the liquid, where D is the deformation gradient. This 
term may be large around the equator of the drop where the strong shearing action 
of the air rapidly stretches the liquid. Also, as the drop is flattened by the strong 
streamwise pressure gradient, significant frictional heating may occur. Both of the 
processes are very complicated, and require further detailed analysis to determine 
their relative importance. However, it is clear that the frictional heating points in the 
direction of rising temperature and vapour pressure, making flash vaporization more 
likely. 

6. Conclusion 
We identified five sources of low pressure and high temperature at the leeside 

of liquid drops in supersonic and hypersonic flow. These five sources are: (i) the 
rarefaction of the gas as it passes over the sphere in steady flow, (ii) the low pres- 
sure at the leeside produced by acceleration of the drop, (iii) the high tensions 
equivalent to low pressures produced by extensional motions of matter stripped 
from the drop, (iv) the frictional heating which is inevitable for the huge strains 
required for drop breakup, and (v) the heating of sheets and filaments torn from the 
drop by hot air. The steady flow problem was solved exactly by numerical simu- 
lation and the other mechanisms were discussed in a heuristic way. The conditions 
for flash vaporization arise at very early times; in milliseconds these severe condi- 
tions have relaxed and vaporized gas could recondense and evaporate in a normal 
way. 
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